考百分小编 2023-09-25 19:37:02

三角函数的8个诱导公式 都有哪些公式


三角函数是高中数学中的重要内容,其中诱导公式更是三角函数中的关键。三角函数诱导公式是指通过对三角函数中的某一函数进行代数运算,得出其他函数的公式。以下是小编整理的三角函数的8个诱导公式,大家可以看一看。

内容导航1角函数记忆口诀2角函数的8个诱导公式是什么1角函数记忆口诀

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:

把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

符号判断口诀:

全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正。

2角函数的8个诱导公式是什么

1. 正弦函数的诱导公式

sin(-x) = -sin(x)

这个公式表明,正弦函数的值在x轴上是关于原点对称的。也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。

2. 余弦函数的诱导公式

cos(-x) = cos(x)

这个公式表明,余弦函数的值在y轴上是关于原点对称的。也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。这个公式同样也可以帮助我们计算负角的余弦值。

3. 正切函数的诱导公式

tan(-x) = -tan(x)

这个公式表明,正切函数的值在原点上是关于y轴对称的。也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。这个公式在计算负角的正切值时非常有用。

4. 余切函数的诱导公式

cot(-x) = -cot(x)

这个公式表明,余切函数的值在原点上是关于x轴对称的。也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。这个公式同样也可以帮助我们计算负角的余切值。

5. 正弦函数的平方的诱导公式

sin^2(x) + cos^2(x) = 1

这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。

6. 正切函数的平方的诱导公式

tan^2(x) + 1 = sec^2(x)

这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。这个公式在计算三角形中的未知边长时非常有用。

7. 余切函数的平方的诱导公式

cot^2(x) + 1 = csc^2(x)

这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。这个公式同样也可以帮助我们计算三角形中的未知边长。

8. 正弦函数和余弦函数的诱导公式

sin(x + π/2) = cos(x)

cos(x + π/2) = -sin(x)

这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。这个公式在计算三角函数的复合函数时非常有用。

本文链接:https://kao100.com/wenzhang/158895.html

相邻文章

最后修改于 2023-09-25

收集整理更新不易,如果觉得本篇资料不错,请点赞评论支持一下吧!
相关文章推荐
好文推荐