今天小编为大家带来了一份高中数学秒杀公式及使用方法!主要适合成绩中等及以上的同学。掌握这些高中数学技巧,一个技巧对应一类题,考试基本上就不愁了!
内容导航高中数学答题有哪些技巧高中数学答题技巧模板高中数学答题有哪些技巧配方法:多项式除法、一次项指数变型
分类分割法:和差化积、三角形面积测算
代数式的变型:三元一次方程、二次函数零点测算
发散思维:组合数学、排列与组合
极值点法:函数最值、二次函数图像
不等式的应用:二次函数、三角函数基本不等式
构造法:证实几何图形定律、解数学题目
分类讨论法:最大值最小值、不等式证明
自变量代用法:有理函数积分兑换、三角函数积分
对称:椭圆形、双曲线方程几何性质
函数性质:奇偶性、规律性
配方法:三角函数解方程、二次函数解方程
招数分析方法:证实答题招数、常见结果招数
等比数列:求合、通项公式
余弦定理和正弦定理:三角形测算、平面向量测算
倍角公式和半角公式:三角函数变型
导函数法:极值点、转折点、单调性
反函数法:列方程、函数图象
平移法:函数图象、图形移动
独特方式:绝对值不等式、反比例函数
等差数列:求合、通项公式
矩形面积法:定积分、反函数求导
怪异一个角的解决:三角函数、三角形测算
三角函数关系式解方程:和差公式、倍角公式、半角公式
高中数学答题技巧模板1、适用条件:[直线过焦点],必有ecosa=(x-1)/(x+1),其中a为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则t=2k;
(2)若f(x)=m/(x+k)(m不为0),则t=2k;
(3)若f(x)=f(x+k)+f(x-k),则t=6k。注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在r上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4、函数奇偶性:
(1)对于属于r上的奇函数有f(0)=0
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5、数列爆强定律:
1.等差数列中:s奇=na中,例如s13=13a7
2.等差数列中:s(n)、s(2n)-s(n)、s(3n)-s(2n)成等差
3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
4.等比数列爆强公式:s(n+m)=s(m)+q²ms(n)可以迅速求q
6、数列的终极利器,特征根方程。(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
本文链接:https://kao100.com/wenzhang/159893.html
相邻文章